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Abstract

The existence of bi-Hamiltonian structures for the rational harmonic oscillator
(non-central harmonic oscillator with rational ratio of frequencies) is analysed
by making use of the geometric theory of symmetries. We prove that
these additional structures are a consequence of the existence of dynamical
symmetries of non-symplectic (non-canonical) type. The associated recursion
operators are also obtained.
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Mathematics Subject Classification: 37J15, 37J35, 70H33

1. Non-symplectic symmetries

It is well known that there is a close relation [1] between integrability and the existence of
alternative structures (see e.g. [2] for a recent paper) and also that integrable systems are
systems endowed with a large number of symmetries. The purpose of this letter is to analyse,
in the particular case of the n = 2 harmonic oscillator, how these additional structures arise
from the existence of dynamical symmetries of non-symplectic (non-canonical) type.

Let (M, wy, H) be a Hamiltonian system and I'y the associated Hamiltonian vector field,
defined by i (I'y)wo = dH. A (infinitesimal) dynamical symmetry of this system is a vector
field Y € X (M) such that [Y, I'g] = 0. When Y is a dynamical but non-symplectic symmetry
of the system, then we have that (i) the dynamical vector field I'y is bi-Hamiltonian, and (ii)
the function Y (H) is the new Hamiltonian, and therefore is a constant of motion.

A sketch of the proof [3—6] of this statement is as follows: The vector field Y does
not preserve wp and, as it is a non-canonical transformation, it determines a new 2-form
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wy = Lywy (Ly denotes the Lie derivative with respectto Y). As Yis a symmetry, [Y, I'y] = 0,
then Ly o ir, = ir, o Ly, and, consequently,

irﬂa)y = l'[‘H,Cya)() = Eyirﬂa)o = ﬁy(dH) = d(YH)

Therefore, the 2-form wy is admissible for the dynamical vector field I'y, i.e. Lr oy = 0,
which is weakly bi-Hamiltonian with respect to the original symplectic 2-form w, and the new
structure wy. Of course, the particular form of wy depends on Y and, in some cases, it can be
just a constant multiple of wy (trivial bi-Hamiltonian system). In some other cases wy may be
a degenerate 2-form with a nontrivial kernel. In any case, the vector field I'y is a dynamical
system solution of the following two equations:

iTp)wo=dH and i(T'y)wy =d[Y(H)]

Therefore, the function Hy = Y (H), which must be a constant of motion, can be considered
as a new Hamiltonian for I'y.

2. Bi-Hamiltonian structures of the rational harmonic oscillator

The two-dimensional harmonic oscillator

H = %(p§+p§)+%()ﬁx2+k§y2) (1)
has the two one-degree-of-freedom energies, /| = E, and I, = E,, as fundamental constants
of motion. The superintegrability of the rational case, A; = mAg, Ay = nkg, withm,n € N,
can be proved by making use of a complex formalism [7, 8]. Let K, K, be the following two

functions K, = p, +imAox and K, = p, +inioy; then the Hamiltonian // and the canonical
symplectic form wy become

H = 3(K.K} +K,K})

and _ .

o0 = 5= K A K + 5 dKy A K
We have

(K., K[} =2imhg {Ky, K} =2ink
and, therefore, the evolution equations are

EKX = imhioKy iK"‘ = —inrK?.

dr dr Y y

Hence, the complex function J defined as
J =K (K ;‘)’” )
is a constant of motion that determines two different real first integrals, /s = Im(J) and

Iy = Re(J), which are polynomials in the momenta of degree m + n — 1 and m + n,
respectively. As an example, for the isotropic case, A; = A, = Ao, We obtain

Re(J) = pyp, + k(z)xy Im(J) = Ao(xpy — ypy).

Im(J) is just the angular momentum and Re (/) is the non-diagonal component of the Fradkin
tensor [9]. For the first non-isotropic case, A; = Ao, Ao = 2X(, we obtain

Re(J) = pipy +A5(4ypx — xpy)x Im(J) = (xpy — yps) px + Agxy.

This complex procedure provides not only the fundamental constant I3, but the pair (I3, I4);
although the ‘partner’ function /4 is not independent (it is a function of I, I, I3), we will see



Letter to the Editor L681

that it plays an important role, since it is closely concerned with the bi-Hamiltonian formalism.
In fact, we will take the complex function J as our starting point for the search of symmetries,
but J means not only one but two functions, I3 and I4.

Noether theorem in the Hamiltonian formalism states that all constants of motion arise
from canonical symmetries of the Hamiltonian function. Moreover, in differential geometric
terms, the infinitesimal symmetries are simply those corresponding to the Hamiltonian vector
fields, with respect to the canonical structure w, defined by the constants of motion. In this
particular case, the above complex function J given by (2) arises from a symmetry of (1)
represented by the complex vector field X ; defined by

i(X))wo = dJ X, (H) = 0. 3)

In the following, and for easy of notation, we will suppose Ap = 1.

Proposition 1. The complex vector field X, defined by (3) as the canonical infinitesimal
symmetry associated with J, can be written as a linear combination of two dynamical but
non-symplectic symmetries of I'y.

Proof. Let us denote by Y,,, and Yy, the Hamiltonian vector fields of K, and K,

i(Yem)wo = dK, i(Yy)wo = dK,
with coordinate expressions
Yow = = — im =2 i
’ dx Aps T By apy

Note that, as H = I, + I, with |K,|*> = 21, and |Ky|2 = 21,, we have
Iy =Re(K[Yym + Ky Y0

Y& yn

Then, the complex vector field X ;, canonical infinitesimal symmetry of the harmonic oscillator,
can be written as the following linear combination

X;=nY +mY’
where Y, Y’ are given by
Y = (K" VK™) Yom Y = (KiK.
The important point is that these two vector fields, Y and Y’, are neither locally Hamiltonian
with respect to wy
Eya)o ;ﬁ 0 ,Cyfa)o ;ﬁ 0
nor infinitesimal symmetries of the Hamiltonian
LyH #0 Ly H # 0.
Concerning the Lie bracket of Y with the dynamical vector field 'y, it is given by
[Y, Tul = (K! 7' K" Y, Tl = Tr(KL ' K3™) Yim
but as
[Yxma FH] = _inm [Y;n’ FH] = _iY;n
and
Tu(K7'K3™) = (n = 1D)(im) (K7 K™) + m(—in) (K7 K™)
= —im(K}~'K;™)
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we obtain
[Y,u] =0.

Thus, Y is a dynamical but non-symplectic (non-canonical) symmetry of I'y. It can be proved,
in a similar way, that this property is also true for Y’. Note that, in the language of 1-forms, this
property arises from the fact that dJ splits as a sum of two non-closed 1-forms that,
nevertheless, remain invariant under I'y, that is, dJ = n¢; + m¢o, d¢, # 0, Lr,(¢,) = 0,
r=1,2. O

Two new structures can be obtained from wy by Lie derivation with respect to ¥ and Y’.
If we denote by wy and a); these two new 2-forms, wy = Lywy and a); = Ly wo, then we
obtain

wy = —m(K" VK" V) dK, A dK wy =n(K" VK" D)dK, A dK
In the following we will denote by €2 the complex 2-form defined as
Q=dK, NdK} = Q) +i2
where the two real 2-forms, 21 = Re(2) and 2, = Im(£2), take the form
Q) =mndx Ady +dp, Adp, Qy =mdx Adpy,+ndy Adp,.
Note that wy and wy, satisfy the relation nwy +mw} = 0. Actually, this can be considered as a

consequence of the fact that X is locally Hamiltonian with respect to the canonical form wy.

Proposition 2. The dynamical vector field Ty of the rational harmonic oscillator is a bi-
Hamiltonian system with respect to (wg, wy).
Proof. Note that

iTwwy = —m(K" VK" D)i(Ty)Q
and as

iTy) Q2 =Ty(Ky) dK;‘ - FH(K;‘) dK, =imK, dK;‘ +inK;‘ dK,
we obtain that

i(Trwy = —imd(K}K™).
Thus, I'y is the Hamiltonian vector field with respect to wy with KK ;”" as the Hamiltonian
function. Moreover, we can also compute the action of ¥ on H; a direct calculation gives

Hy =Y(H) = —im(K}K}").
To conclude, we have found that the integral of motion J determines the following bi-
Hamiltonian system:

iTy)wy =dH i(T'y)wy = dHy.

We first remark that I'y is bi-Hamiltonian with respect to two different structures:
the canonical symplectic form wy and another one, wy, which is complex. If we write
wy = w4 + 1wz, then I'y can be considered as a bi-Hamiltonian system with respect to
the following three real forms (wq, w3, w4) (i.e.it is a three-Hamiltonian system). The wg-
Hamilton equation determined by J,

i(X)wo=dJ
is also complex; thus it determines two real Hamiltonian equations
i(X4)wg = dly i(X3)wy =dI3

with X4, X3, givenby X; = X4 +1X3.
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As a second remark, the complex 2-form Q = dK, A dK j is well defined but it is not
symplectic. In fact, it can be proved that ; = Re(£2) and 2, = Im(£2) satisfy

QINQ = A2 =mn(dx Ady Adp, Adpy) and QAR =0
SO we obtain
QAQ=(Q ANQ — Q2 ARQ)+2iQ2 A2y =0.
Thus, the degenerate character of 2 is directly related to its complex nature. Moreover, the
kernel of €2 is the distribution generated by Y,,, and Y ;n,
KerQ = {f Y+ | f.g : R*xR>— C}
therefore it satisfies
[Ker 2, I'y] C Ker 2.

Finally, the 2-form wy is also degenerate. We obtain Ker wy = Ker €2, because of the
relation between 2 and wy. However, ws and w4, defined as wy = w4 + iw3, are symplectic
real forms. Moreover, the form wy + 2 is symplectic because of {K,, K ;‘} =0. O

3. Recursion operators

The bi-Hamiltonian structure (wp, wy) defines a complex recursion operator Ry by
wy(X,Y)=w)(RyX,Y) VX,Y € X(M)

or, equivalently, Ry = @5 Lo y. Since it is complex, it can be written as Ry = R4 +1iR3, s0
that R4 and Rj satisfy the relations

3(X,Y) =wo(R3X,Y) and wy(X,Y) = wp(R4X, Y).

Thus, we have that R; and Ry are given by R3 = @51 owszand Ry = @51 o Ws.

The important point is that the complex 2-form €2 = dK, A dK§ can be decomposed as
Q = Q) +12,, where both 2-forms, €2; and €2, are symplectic. Hence, we have, in addition
to R3 and R4, two other recursion operators R; and R, associated with the bi-Hamiltonian
structures provided by € and €2, respectively.

Proposition 3. The tensor fields Ry and R are invertible operators which anticommute and
satisfy Ry = R?.

Proof. As 2, and €2, are symplectic forms, the operators R; and R, are invertible. Their
coordinate expressions are given by

d d 0 0
R =—®dp. — — ®dp, +mn ®dy — — ®dx 4)
dy 0x opx apy
R 8®d+ ®d + a®d+8®d ®)
=m|— X , n|{— — .-
2 dy ap, o Py ox = T ap, O P

Therefore,
R} =mnld R; = mnld.
Moreover, we have
, 0
OPx
and R; R, = —R>Ry; therefore RyR; + R{R, = 0.

a a ad
RR=n|—®dp, —m Qdx ) —m|—®dp, —n*— @dy,
ax ay ’ apy

Dy
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We recall that the relation between wy and Q2 is wy = w4 + iw; = —mKQ, with the
complex function K given by K = K"~V K*™=D = K, +iK;. Thus, the above two tensor
fields, R3 and Ry, are given by

Ry = —m(K, R, — K;R>) (6)
Ry = —m(K, R + KiRy) (N
and, making use of the preceding proposition, we obtain
Ri=R;=rId with r = m*(mn)*|K|*
and
R4R3 = m*|K|°R| R, R3Rs = m*|K|*RyR,

where the modulus of K is a function of the first two integrals, /; and I,

K> = K2+ K? = 1)V @2L)™m Y,
Thus, the two tensor fields, R3; and R4, anticommute as well. O
Proposition 4. The complex operator Ry = R4 +1R3 is such that Image(Ry) = Ker Ry.

Proof. Let X be a generic vector field on the phase space

a a a a
X=a—+b—+c +d—
ax dy opx ap,

with a, b, c,d arbitrary functions. Then, since Ry = R4 + iR3 is given by Ry =
—mIK(R; +1R,), the subspace Image of Ry is given by

Image(Ry) = —{Z € X(R? x R})|Z = —mK(R,(X) +iR2(X))}.
We obtain

R (X)+iRy(X) = —(d — inb)Yy,, + (c +ima)Yy*n.
Thus, Image(Ry) is made up of linear combinations of Y,,, and Y;n with arbitrary complex
functions as coefficients. But, since Ker Ry = Kerwy and Kerwy coincides with Ker €2,
which is also spanned by Yy, and Y, we arrive at Image(Ry) = Ker Ry. Consequently
R, =RyoRy=0.

Given a bi-Hamiltonian system on a manifold M, i (I")wy = dHp and i (T")w; = dH}, the

point is that the tensor field R, that was just defined by the relation between w; and wy, induces
a sequence of structures. Starting with the basic Hamiltonian system (wo, ['0 = I', dHy) we

can construct a sequence of 2-forms wy, of vector fields Iy, and of 1-forms oy, k = 1,2, ...,
defined by @; = @ o R*, Ty = R¥(I'y), and oy = R¥(dHp). Then it follows that

iTow; =i(IM')wo = dH, iTo)w =i(MDw =i(M)wy = az
where

Wy =wyo R W =w oR

't = R(Ip) [ = R(I')

dH1 = R*(dHo) 0y = R*(dHl)
The 1-form «; is not necessarily exact, but if there is H, such that «y = dH;, then the vector
field T'; is a bi-Hamiltonian system as well. An interesting case is when o, is not exact but
there exist a nonvanishing function F, and another function H, such that o, = F> dH,. Then
F{l is an integrating factor for a, and the vector field I'; is said to be quasi-bi-Hamiltonian
[11,12].
Coming back to the rational harmonic oscillator as a bi-Hamiltonian system, i (I'y)wy =
dH, and i (I'y)wy = dHy, the situation is as follows:
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(i) The action of Ry is such that I'y = ') becomes I';} = Ry(I'y) = —im X,
(ii) dHy transforms into dHy = R} (dHp) = —idJ and
(iii) wy becomes wy such that Wy = @y o Ry.

We have proved that R2 = 0 because of proposition 4; therefore, I'; transforms into
the new field, I', = Ry (I')) = R%(FH) = 0, while dHy transforms into o = R} (dHy) =
R’;z (dHp) = 0. Hence, it follows that the equation

iTyw, =i(TM)w =i(TF)wy = a2
becomes
i(Fl)a)l =0.

Note that this last equation corresponds to the property i (X j)wy = 0.
The harmonic oscillator can be considered as a complex and weakly bi-Hamiltonian
system, or alternatively, as endowed with two different real bi-Hamiltonian structures

i(FH)wo = dHO i(FH)a)4 =m d[3 i(FH)a)3 = —m dI4.
One real structure gives rise to I'j3 defined by I';3 = R3(I'y), and the other one to
F14 = R4(FH), such that

iTwo =i(Tr)wy =mdl; iTp)w =i(Tn)w; = —mdly.

Moreover, taking into account that Rf = r Id, we obtain
T4 = Ry(T14) = R;(Ty) = rTy
azy = Ri(mdl3) = R}*(dHy) = r dH,
624=640R4=600R§ =r60
and similar results for R5. O

Now, making use of all these relations, we can prove the following final proposition
concerning the properties of the vector fields X3 and Xj.

Proposition 5. Let X3 and X4 denote the two infinitesimal canonical symmetries generating
the two constants of motion Iz and ls. Then X3 and X4 are quasi-bi-Hamiltonian systems.
Moreover, ws(X3, 'y) = w3(X4, 'y) = 0.

Proof. The rational harmonic oscillator is endowed with the two constants of motion /5 and Iy
which means, via the Hamiltonian—Noether theorem, the existence of two symmetries. They
are geometrically represented by two vector fields, X3 and X4, that can be uniquely determined
as solutions of the following two equations:

i(X3)wy = dl; i(Xg)wo = dly.
Then we have
'3 =R3(T'n) = —mXy 4 = Ry(T'y) = mXs.
Hence, if we denote by f34 the function f34 = m(mn)?|K|%, we obtain
i(X3)wy = dI3 i(X3)ws = f34dHy
and
i(Xg)wo = dly i(X4)w; = — f34 dHy.

So, both X3 and X4 are quasi-bi-Hamiltonian systems. 0
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A direct consequence of this property is that the dynamical vector field I'y is orthogonal

to X3 with respect to the symplectic structure wy,
i(X3)i(Ty)wo =0 and i(X3)i(Ty)ws = 0.
Similarly, we obtain
i(Xg)i(Tm)wo =0 and i(X4)i(T'yg)ws =0.
Finally, X3 and X4 are orthogonal vector fields with respect to both structures, w3 and wa:

i(X3)i(X4)a)3 =0 and i(X3)i(X4)a)4 =0.
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