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Abstract
The existence of bi-Hamiltonian structures for the rational harmonic oscillator
(non-central harmonic oscillator with rational ratio of frequencies) is analysed
by making use of the geometric theory of symmetries. We prove that
these additional structures are a consequence of the existence of dynamical
symmetries of non-symplectic (non-canonical) type. The associated recursion
operators are also obtained.
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Mathematics Subject Classification: 37J15, 37J35, 70H33

1. Non-symplectic symmetries

It is well known that there is a close relation [1] between integrability and the existence of
alternative structures (see e.g. [2] for a recent paper) and also that integrable systems are
systems endowed with a large number of symmetries. The purpose of this letter is to analyse,
in the particular case of the n = 2 harmonic oscillator, how these additional structures arise
from the existence of dynamical symmetries of non-symplectic (non-canonical) type.

Let (M,ω0,H) be a Hamiltonian system and �H the associated Hamiltonian vector field,
defined by i(�H)ω0 = dH . A (infinitesimal) dynamical symmetry of this system is a vector
field Y ∈ X(M) such that [Y,�H] = 0. When Y is a dynamical but non-symplectic symmetry
of the system, then we have that (i) the dynamical vector field �H is bi-Hamiltonian, and (ii)
the function Y (H) is the new Hamiltonian, and therefore is a constant of motion.

A sketch of the proof [3–6] of this statement is as follows: The vector field Y does
not preserve ω0 and, as it is a non-canonical transformation, it determines a new 2-form
4 Author for correspondence.
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ωY = LY ω0 (LY denotes the Lie derivative with respect to Y). As Y is a symmetry, [Y,�H] = 0,
then LY ◦ i�H = i�H ◦ LY , and, consequently,

i�HωY = i�HLY ω0 = LY i�Hω0 = LY (dH) = d(YH).

Therefore, the 2-form ωY is admissible for the dynamical vector field �H, i.e. L�HωY = 0,
which is weakly bi-Hamiltonian with respect to the original symplectic 2-form ω0 and the new
structure ωY . Of course, the particular form of ωY depends on Y and, in some cases, it can be
just a constant multiple of ω0 (trivial bi-Hamiltonian system). In some other cases ωY may be
a degenerate 2-form with a nontrivial kernel. In any case, the vector field �H is a dynamical
system solution of the following two equations:

i(�H)ω0 = dH and i(�H)ωY = d[Y (H)]

Therefore, the function HY = Y (H), which must be a constant of motion, can be considered
as a new Hamiltonian for �H.

2. Bi-Hamiltonian structures of the rational harmonic oscillator

The two-dimensional harmonic oscillator

H = 1
2

(
p2

x + p2
y

)
+ 1

2

(
λ2

1x
2 + λ2

2y
2
)

(1)

has the two one-degree-of-freedom energies, I1 = Ex and I2 = Ey , as fundamental constants
of motion. The superintegrability of the rational case, λ1 = mλ0, λ2 = nλ0, with m,n ∈ N,
can be proved by making use of a complex formalism [7, 8]. Let Kx,Ky be the following two
functions Kx = px + imλ0x and Ky = py + inλ0y; then the Hamiltonian H and the canonical
symplectic form ω0 become

H = 1
2 (KxK

∗
x + KyK

∗
y )

and

ω0 = i

2mλ0
dKx ∧ dK∗

x +
i

2nλ0
dKy ∧ dK∗

y .

We have

{Kx,K
∗
x } = 2 imλ0 {Ky,K

∗
y } = 2 inλ0

and, therefore, the evolution equations are

d

dt
Kx = imλ0Kx

d

dt
K∗

y = −inλ0K
∗
y .

Hence, the complex function J defined as

J = Kn
x (K∗

y )m (2)

is a constant of motion that determines two different real first integrals, I3 = Im(J ) and
I4 = Re(J ), which are polynomials in the momenta of degree m + n − 1 and m + n,
respectively. As an example, for the isotropic case, λ1 = λ2 = λ0, we obtain

Re(J ) = pxpy + λ2
0xy Im(J ) = λ0(xpy − ypx).

Im(J ) is just the angular momentum and Re(J ) is the non-diagonal component of the Fradkin
tensor [9]. For the first non-isotropic case, λ1 = λ0, λ2 = 2λ0, we obtain

Re(J ) = p2
xpy + λ2

0(4ypx − xpy)x Im(J ) = (xpy − ypx)px + λ2
0x

2y.

This complex procedure provides not only the fundamental constant I3, but the pair (I3, I4);
although the ‘partner’ function I4 is not independent (it is a function of I1, I2, I3), we will see
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that it plays an important role, since it is closely concerned with the bi-Hamiltonian formalism.
In fact, we will take the complex function J as our starting point for the search of symmetries,
but J means not only one but two functions, I3 and I4.

Noether theorem in the Hamiltonian formalism states that all constants of motion arise
from canonical symmetries of the Hamiltonian function. Moreover, in differential geometric
terms, the infinitesimal symmetries are simply those corresponding to the Hamiltonian vector
fields, with respect to the canonical structure ω0, defined by the constants of motion. In this
particular case, the above complex function J given by (2) arises from a symmetry of (1)
represented by the complex vector field XJ defined by

i(XJ )ω0 = dJ XJ (H) = 0. (3)

In the following, and for easy of notation, we will suppose λ0 = 1.

Proposition 1. The complex vector field XJ , defined by (3) as the canonical infinitesimal
symmetry associated with J , can be written as a linear combination of two dynamical but
non-symplectic symmetries of �H.

Proof. Let us denote by Yxm and Yyn the Hamiltonian vector fields of Kx and Ky

i(Yxm)ω0 = dKx i(Yyn)ω0 = dKy

with coordinate expressions

Yxm = ∂

∂x
− im

∂

∂px

Yyn = ∂

∂y
− in

∂

∂py

.

Note that, as H = I1 + I2 with |Kx |2 = 2I1 and |Ky |2 = 2I2, we have

�H = Re(K∗
x Yxm + KyY

∗
yn).

Then, the complex vector field XJ, canonical infinitesimal symmetry of the harmonic oscillator,
can be written as the following linear combination

XJ = nY + mY ′

where Y, Y ′ are given by

Y = (
K(n−1)

x K∗m
y

)
Yxm Y ′ = (

Kn
x K∗(m−1)

y

)
Y ∗

yn.

The important point is that these two vector fields, Y and Y ′, are neither locally Hamiltonian
with respect to ω0

LYω0 �= 0 LY ′ω0 �= 0

nor infinitesimal symmetries of the Hamiltonian

LYH �= 0 LY ′H �= 0.

Concerning the Lie bracket of Y with the dynamical vector field �H, it is given by

[Y,�H] = (
Kn−1

x K∗m
y

)
[Yxm, �H] − �H

(
Kn−1

x K∗m
y

)
Yxm

but as

[Yxm, �H] = −iYxm [Y ∗
yn, �H] = −iY ∗

yn

and

�H
(
Kn−1

x K∗m
y

) = (n − 1)(im)
(
Kn−1

x K∗m
y

)
+ m(−in)

(
Kn−1

x K∗m
y

)
= −im

(
Kn−1

x K∗m
y

)
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we obtain

[Y,�H] = 0.

Thus, Y is a dynamical but non-symplectic (non-canonical) symmetry of �H. It can be proved,
in a similar way, that this property is also true for Y ′. Note that, in the language of 1-forms, this
property arises from the fact that dJ splits as a sum of two non-closed 1-forms that,
nevertheless, remain invariant under �H, that is, dJ = nφ1 + mφ2, dφr �= 0,L�H(φr ) = 0,

r = 1, 2. �

Two new structures can be obtained from ω0 by Lie derivation with respect to Y and Y ′.
If we denote by ωY and ω′

Y these two new 2-forms, ωY = LY ω0 and ω′
Y = LY ′ω0, then we

obtain

ωY = −m
(
K(n−1)

x K∗(m−1)
y

)
dKx ∧ dK∗

y ω′
Y = n

(
K(n−1)

x K∗(m−1)
y

)
dKx ∧ dK∗

y .

In the following we will denote by � the complex 2-form defined as

� = dKx ∧ dK∗
y = �1 + i�2

where the two real 2-forms, �1 = Re(�) and �2 = Im(�), take the form

�1 = mn dx ∧ dy + dpx ∧ dpy �2 = m dx ∧ dpy + n dy ∧ dpx.

Note that ωY and ω′
Y satisfy the relation nωY + mω′

Y = 0. Actually, this can be considered as a
consequence of the fact that XJ is locally Hamiltonian with respect to the canonical form ω0.

Proposition 2. The dynamical vector field �H of the rational harmonic oscillator is a bi-
Hamiltonian system with respect to (ω0, ωY ).

Proof. Note that

i(�H)ωY = −m
(
K(n−1)

x K∗(m−1)
y

)
i(�H)�

and as

i(�H)� = �H(Kx) dK∗
y − �H(K∗

y ) dKx = imKx dK∗
y + inK∗

y dKx

we obtain that

i(�H)ωY = −im d
(
Kn

x K∗m
y

)
.

Thus, �H is the Hamiltonian vector field with respect to ωY with Kn
x K∗m

y as the Hamiltonian
function. Moreover, we can also compute the action of Y on H; a direct calculation gives

HY ≡ Y (H) = −im
(
Kn

x K∗m
y

)
.

To conclude, we have found that the integral of motion J determines the following bi-
Hamiltonian system:

i(�H)ω0 = dH i(�H)ωY = dHY .

We first remark that �H is bi-Hamiltonian with respect to two different structures:
the canonical symplectic form ω0 and another one, ωY , which is complex. If we write
ωY = ω4 + iω3, then �H can be considered as a bi-Hamiltonian system with respect to
the following three real forms (ω0, ω3, ω4) (i.e. it is a three-Hamiltonian system). The ω0-
Hamilton equation determined by J ,

i(XJ )ω0 = dJ

is also complex; thus it determines two real Hamiltonian equations

i(X4)ω0 = dI4 i(X3)ω0 = dI3

with X4,X3, given by XJ = X4 + iX3.
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As a second remark, the complex 2-form � = dKx ∧ dK∗
y is well defined but it is not

symplectic. In fact, it can be proved that �1 = Re(�) and �2 = Im(�) satisfy

�1 ∧ �1 = �2 ∧ �2 = mn(dx ∧ dy ∧ dpx ∧ dpy) and �1 ∧ �2 = 0

so we obtain

� ∧ � = (�1 ∧ �1 − �2 ∧ �2) + 2i�1 ∧ �2 = 0.

Thus, the degenerate character of � is directly related to its complex nature. Moreover, the
kernel of � is the distribution generated by Yxm and Y ∗

yn,

Ker � = {f Yxm + gY ∗
yn | f, g : R

2 × R
2 → C}

therefore it satisfies

[Ker �,�H] ⊂ Ker �.

Finally, the 2-form ωY is also degenerate. We obtain Ker ωY = Ker �, because of the
relation between � and ωY . However, ω3 and ω4, defined as ωY = ω4 + iω3, are symplectic
real forms. Moreover, the form ω0 + � is symplectic because of {Kx,K

∗
y } = 0. �

3. Recursion operators

The bi-Hamiltonian structure (ω0, ωY ) defines a complex recursion operator RY by

ωY (X, Y ) = ω0(RY X, Y ) ∀X,Y ∈ X(M)

or, equivalently, RY = ω̂−1
0 ◦ ω̂Y . Since it is complex, it can be written as RY = R4 + iR3, so

that R4 and R3 satisfy the relations

ω3(X, Y ) = ω0(R3X,Y ) and ω4(X, Y ) = ω0(R4X,Y ).

Thus, we have that R3 and R4 are given by R3 = ω̂−1
0 ◦ ω̂3 and R4 = ω̂−1

0 ◦ ω̂4.
The important point is that the complex 2-form � = dKx ∧ dK∗

y can be decomposed as
� = �1 + i�2, where both 2-forms, �1 and �2, are symplectic. Hence, we have, in addition
to R3 and R4, two other recursion operators R1 and R2 associated with the bi-Hamiltonian
structures provided by �1 and �2, respectively.

Proposition 3. The tensor fields R1 and R2 are invertible operators which anticommute and
satisfy R2

2 = R2
1 .

Proof. As �1 and �2 are symplectic forms, the operators R1 and R2 are invertible. Their
coordinate expressions are given by

R1 = ∂

∂y
⊗ dpx − ∂

∂x
⊗ dpy + mn

(
∂

∂px

⊗ dy − ∂

∂py

⊗ dx

)
(4)

R2 = m

(
∂

∂y
⊗ dx +

∂

∂px

⊗ dpy

)
+ n

(
∂

∂x
⊗ dy +

∂

∂py

⊗ dpx

)
. (5)

Therefore,

R2
1 = mn Id R2

2 = mn Id.

Moreover, we have

R2R1 = n

(
∂

∂x
⊗ dpx − m2 ∂

∂px

⊗ dx

)
− m

(
∂

∂y
⊗ dpy − n2 ∂

∂py

⊗ dy

)
,

and R1R2 = −R2R1; therefore R2R1 + R1R2 = 0.
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We recall that the relation between ωY and � is ωY = ω4 + iω3 = −mK�, with the
complex function K given by K = K(n−1)

x K∗(m−1)
y = Kr + iKi . Thus, the above two tensor

fields, R3 and R4, are given by

R4 = −m(KrR1 − KiR2) (6)

R3 = −m(KrR2 + KiR1) (7)

and, making use of the preceding proposition, we obtain

R2
4 = R2

3 = r Id with r = m2(mn)2|K|2
and

R4R3 = m2|K|2R1R2 R3R4 = m2|K|2R2R1

where the modulus of K is a function of the first two integrals, I1 and I2,

|K|2 = K
2
r + K

2
i = (2I1)

(n−1)(2I2)
(m−1).

Thus, the two tensor fields, R3 and R4, anticommute as well. �

Proposition 4. The complex operator RY = R4 + iR3 is such that Image(RY ) = Ker RY .

Proof. Let X be a generic vector field on the phase space

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂px

+ d
∂

∂py

with a, b, c, d arbitrary functions. Then, since RY = R4 + iR3 is given by RY =
−mK(R1 + iR2), the subspace Image of RY is given by

Image(RY ) = −{Z ∈ X(R2 × R
2)|Z = −mK(R1(X) + iR2(X))}.

We obtain

R1(X) + iR2(X) = −(d − inb)Yxm + (c + ima)Y ∗
yn.

Thus, Image(RY ) is made up of linear combinations of Yxm and Y ∗
yn with arbitrary complex

functions as coefficients. But, since Ker RY = Ker ωY and Ker ωY coincides with Ker �,
which is also spanned by Yxm and Y ∗

yn, we arrive at Image(RY ) = Ker RY . Consequently
R2

Y = RY ◦ RY = 0.
Given a bi-Hamiltonian system on a manifold M, i(�)ω0 = dH0 and i(�)ω1 = dH1, the

point is that the tensor field R, that was just defined by the relation between ω1 and ω0, induces
a sequence of structures. Starting with the basic Hamiltonian system (ω0, �0 = �, dH0) we
can construct a sequence of 2-forms ωk , of vector fields �k , and of 1-forms αk, k = 1, 2, . . . ,

defined by ω̂k = ω̂0 ◦ Rk, �k = Rk(�0), and αk = Rk(dH0). Then it follows that

i(�0)w1 = i(�1)ω0 = dH1 i(�0)ω2 = i(�1)ω1 = i(�2)ω0 = α2

where
ω̂1 = ω̂0 ◦ R ω̂2 = ω̂1 ◦ R

�1 = R(�0) �2 = R(�1)

dH1 = R∗(dH0) α2 = R∗(dH1)

The 1-form α2 is not necessarily exact, but if there is H2 such that α2 = dH2, then the vector
field �1 is a bi-Hamiltonian system as well. An interesting case is when α2 is not exact but
there exist a nonvanishing function F2 and another function H2 such that α2 = F2 dH2. Then
F−1

2 is an integrating factor for α2, and the vector field �1 is said to be quasi-bi-Hamiltonian
[11, 12].

Coming back to the rational harmonic oscillator as a bi-Hamiltonian system, i(�H)ω0 =
dH0 and i(�H)ωY = dHY , the situation is as follows:
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(i) The action of RY is such that �H ≡ �0 becomes �1 = RY (�H) = −imXJ ,
(ii) dH0 transforms into dHY = R∗

Y (dH0) = −i dJ and
(iii) ω0 becomes ωY such that ω̂Y = ω̂0 ◦ RY .

We have proved that R2
Y = 0 because of proposition 4; therefore, �1 transforms into

the new field, �2 = RY (�1) = R2
Y (�H) = 0, while dHY transforms into α2 = R∗

Y (dHY) =
R∗2

Y (dH0) = 0. Hence, it follows that the equation

i(�H)ω2 = i(�1)ω1 = i(�2)ω0 = α2

becomes

i(�1)ω1 = 0.

Note that this last equation corresponds to the property i(XJ )ωY = 0.
The harmonic oscillator can be considered as a complex and weakly bi-Hamiltonian

system, or alternatively, as endowed with two different real bi-Hamiltonian structures

i(�H)ω0 = dH0 i(�H)ω4 = m dI3 i(�H)ω3 = −m dI4.

One real structure gives rise to �13 defined by �13 = R3(�H), and the other one to
�14 = R4(�H), such that

i(�14)ω0 = i(�H)ω4 = m dI3 i(�13)ω0 = i(�H)ω3 = −m dI4.

Moreover, taking into account that R2
4 = r Id, we obtain

�24 = R4(�14) = R2
4(�H) = r�H

α24 = R∗
4(m dI3) = R∗2

4 (dH0) = r dH0

ω̂24 = ω̂4 ◦ R4 = ω̂0 ◦ R2
4 = rω̂0

and similar results for R3. �

Now, making use of all these relations, we can prove the following final proposition
concerning the properties of the vector fields X3 and X4.

Proposition 5. Let X3 and X4 denote the two infinitesimal canonical symmetries generating
the two constants of motion I3 and I4. Then X3 and X4 are quasi-bi-Hamiltonian systems.
Moreover, ω4(X3, �H) = ω3(X4, �H) = 0.

Proof. The rational harmonic oscillator is endowed with the two constants of motion I3 and I4

which means, via the Hamiltonian–Noether theorem, the existence of two symmetries. They
are geometrically represented by two vector fields, X3 and X4, that can be uniquely determined
as solutions of the following two equations:

i(X3)ω0 = dI3 i(X4)ω0 = dI4.

Then we have

�13 = R3(�H) = −mX4 �14 = R4(�H) = mX3.

Hence, if we denote by f34 the function f34 = m(mn)2|K|2, we obtain

i(X3)ω0 = dI3 i(X3)ω4 = f34 dH0

and

i(X4)ω0 = dI4 i(X4)ω3 = −f34 dH0.

So, both X3 and X4 are quasi-bi-Hamiltonian systems. �
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A direct consequence of this property is that the dynamical vector field �H is orthogonal
to X3 with respect to the symplectic structure ω4,

i(X3)i(�H)ω0 = 0 and i(X3)i(�H)ω4 = 0.

Similarly, we obtain

i(X4)i(�H)ω0 = 0 and i(X4)i(�H)ω3 = 0.

Finally, X3 and X4 are orthogonal vector fields with respect to both structures, ω3 and ω4:

i(X3)i(X4)ω3 = 0 and i(X3)i(X4)ω4 = 0.
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